© MyMathsCloud

Pulleys – Vertical & Horizontal Solutions

Table of Contents

1 Bronze			
1.	1	Vertical – Known Masses	2
	1.1.1	With SUVAT –Distance Travelled and Greatest Height	4
1.	2	Horizontal - Known Masses	10
	1.2.1	With SUVAT – Finding the Acceleration / Time Taken To Hit The Pulley	13
2	Silver.		17
2.	1	Vertical – Unknown Masses	17
	2.1.1	With SUVAT – Greatest Height and Taut Again	18
2.	2	Horizontal	19
	2.2.1	With Friction (year 2 only)	19
3	Gold		22
з.	1	Vertical	22
	3.1.1	Using SUVAT Multiple Times	22
	3.1.2	More Than 1 Tension (suspended Pulleys)	26
	3.1.3	With SUVAT - Speed hits the pulley and total distance travelled	28
	3.1.4	With Friction (year 2 only)	30
4	Diamo	nd	. 34
4.	1	Vertical	34
	4.1.1	SUVAT Many Times (Hardest SUVAT Type)	34
	4.1.2	More Than 1 Object On Either Side	37
4.	2	Horizontal	40
	4.2.1	SUVAT Many Times (Hardest SUVAT Type)	40
	4.2.2	Harder Algebra	42
4.	3	Vertical - 2 Pulleys and Diagonal Forces (year 2 only)	43

© MyMathsCloud

1 Bronze

1.1 Vertical – Known Masses

1)

Let's put all the common forces that exist for these types of questions (tension and weight) on a labelled diagram. Remember that weight is equal to $mass \times gravity$. For your course our assumptions are that: the tensions are the same on both sides of the pulley (since pulley is smooth) so we label both sides as Tthe accelerations are the **same** on both sides of the pulley (since string is inextensible) so we label both sides as a We know B is heavier so B must move downwards hence we know the directions of acceleration Remember the weight is mass \times gravity hence our weight forces are 3g and 5g Let's build our equations for each object (object A and object B) before worrying about what the question is asking for. What they are asking for will come out if we build the equations correctly. We can ignore the purple tensions since they are acting on the pulley and we aren't needing to consider the pulley for this question (this is only when the questions talks about the forces exerted on the pulley). Consider A: Consider B: Take 1 as positive since A is moving upwards Take \downarrow as positive since going B is moving downwards This means every force going downwards is a positive sign This means every force going upwards is a positive sign and every force going upwards is a negative sign and every force going downwards is a negative sign Note: we could have taken \downarrow as positive, but then it means Note: we could have taken 1 as positive, but then it we'd have to make accel a neg sign in the equation below) means we'd have to make accel a neg sign in the equation below) Follow the template f = maRemember m is the mass, not the weight! Follow the template f = maRemember m is the mass, not the weight! $\uparrow: T - 3g = 3a \ (1)$ $\downarrow := -T + 5g = 5a (2)$ Notice how we have 2 equations and 2 unknowns, so we can find both T and a. Remember that g is not an unknown, it is gravity which we know is 9.8. Let's solve our equations simultaneously T - 3g = 3a

© MyMathsCloud

-T + 5g = 5a (2)

Let's put all the common forces that exist for these types of questions (tension and weight) on a labelled diagram. Remember that weight is equal to $mass \times gravity$.

For your course our assumptions are that:

- the tensions are the **same** on both sides of the pulley (since pulley is smooth) so we label both sides as T
- the accelerations are the **same** on both sides of the pulley (since string is inextensible) so we label both sides as *a*

We are told A moves downwards so we know the directions of the accelerations (A moves downwards which means B moves upwards). Also we know A is heavier so A must move downwards.

Remember the weight is mg hence we have 3g and 2g

Let's build our equations for each object (object A and object B) before worrying about what the question is asking for. What they are asking for will come out if we build the equations correctly. We can ignore the purple tensions since they are acting on the pulley and we aren't needing to consider the pulley for this question (this is only when the questions talks about the forces exerted on the pulley).

Consider A:	Consider B:
Take \downarrow as positive since A is moving downwards	Take 1 as positive since going B is moving upwards
This means every force going downwards is a positive sign	This means every force going upwards is a positive sign
and every force going upwards is a negative sign	and every force going downwards is a negative sign

© MyMathsCloud

	Note: we could have taken \uparrow as positive, but then it means we'd have to make accel a neg sign in the equation below) Follow the template $f = ma$ Remember m is the mass, not the weight! $\downarrow: -T + 3g = 3a$ (1)	Note: we could have taken \downarrow as positive, but then it means we'd have to make accel a neg sign in the equation below) Follow the template $f = ma$ Remember m is the mass, not the weight! $\uparrow: T - 2g = 2a$ (2)	
Not whi	ice how we have 2 equations and 2 unknowns, so we can find ch we know is 9.8.	both T and a . Rememebr that g is not an unknown, it is gravity	Ý
Let	solve our equations simultaneously $-T + 3g$	= 3a (1)	
	T-2g =	= 2a(2)	
	Way 1: Use elimination	Way 2: re-arrange both equations for T and set them	
	-T + 3g = 3a (1) $T - 2g = 2a (2)$	T = 3g - 3a $T = 2g + 2a$	
	You can re-arrange to make the equations look more familiar if you like (have the variables on the left and numbers on the right)	Now we can set both equations equal	
	-T - 3a = -3g (1)	3g - 3a = 2g + 2a	
	T-2a=2g(2)	Group common terms	
	Now we add in order to eliminate T	5a = g	
	-5a = -g	$a = \frac{1}{2}a = \frac{1}{2}(9.8) = 1.96$	
	$a = \frac{1}{r}g = \frac{1}{r}(9.8) = 1.96$	$a = 5^{9} = 5^{(3.0)} = 1.90$	
	5 5 Sub this into any equation	Sub this into any equation	
	sub this into any equation	Let's choose $-T + 3g = 3a$ (1)	
	Let's choose $-T + 3g = 3a$ (1)	-T + 3g = 3(1.96)	

-T + 3g = 3(1.96)

T = 3g - 3(1.96) = 23.52 N

T = 3g - 3(1.96) = 23.52 N

1.1.1 With SUVAT – Distance Travelled and Greatest Height

3)

Let's put all the common forces that exist for these types of questions (tension and weight) on a labelled diagram. Remember that weight is equal to mass × gravity.

For your course our assumptions are that:

- the tensions are the same on both sides of the pulley (since pulley is smooth)
- the accelerations are the same on both sides of the pulley (since string is inextensible)

We know that 7 > 5 so the 7 kg mass must move moves downwards. This means we know the directions of the accelerations (The 7 kg mass moves downwards which means the 5 kg mass moves upwards)

© MyMathsCloud

Let's build our equations for each object (object with 5 kg mass and object with 7 kg mass) before worrying about what the question is asking for. What they are asking for will come out if we build the equations correctly. We can ignore the purple tensions since they are acting on the pulley and we aren't needing to consider the pulley for this question (this is only when the questions talks about the forces exerted on the pulley).

Consider the 5 kg mass:	Consider the 7 kg mass:
Take ↑ as positive since moving upwards	Take \downarrow as positive since moving downwards
This means every force going upwards is a positive sign	This means every force going downwards is a
and every force going downwards is a negative sign	positive sign and every force going upwards is a
	negative sign
Follow the template $f = ma$	
	Follow the template $f = ma$
$\downarrow: T - 5g = 5a \ (1)$	
	$\uparrow: -T + 7g = 7a (2)$

Notice how we have 2 equations and 2 unknowns, so we can find both T and a. Remember that g is not an unknown, it is gravity which we know is 9.8.

Let's solve our equations simultaneously

i.

ii.

$$\begin{split} & \int -2g = 5a \left(\frac{1}{2} -7 + 7g = 7a \left(\frac{2}{2} \right) \right) \\ & -7 + 7g = 7a \left(\frac{2}{2} \right) \\ & You can re-arrange to make the equations look more familiar if you like (have the variables on the left and numbers on the right) \\ & T - 5a = 5g \left(\frac{1}{2} \\ -7 - 7a = -7g \left(\frac{2}{2} \right) \right) \\ & Now we add in order to eliminate T \\ & -12a = -2g \\ & a = \frac{2}{12}g = \frac{1}{6}(9.8) = 1.633 \\ & Sub this into any equation \\ & Let's choose T - 5g = 5a \left(\frac{1}{2} \\ T - 5g = 5(1.633) \\ & T - 5g = 5(1.633) \\ & T = 5g + 5(1.633) = 57.165 N \end{split}$$

$$\begin{aligned} & Way 2: re-arrange both equations for T and set them equal \\ & T = 5a + 5g \\ T = 7g - 7a \\ & Way 2: re-arrange both equations for T and set them equal \\ & T = 5a + 5g \\ T = 7g - 7a \\ & Now we can set both equations equal \\ & 5a + 5g = 7g - 7a \\ & Group common terms \\ & 12a = 2g \\ & a = \frac{2}{12}g = \frac{1}{6}(9.8) = 1.633 \\ & Sub this into any equation \\ & Let's choose T - 5g = 5a \left(\frac{1}{2} \\ & T - 5g = 5(1.633) \\ & T = 5g + 5(1.633) = 57.165 N \end{aligned}$$

a = 1.63

© MyMathsCloud

Take 1 as positive since A is moving downwards Take 1 as positive since going B is moving upwards

Consider B:

Consider A:

5)

www.mymathscloud.com

© MvMathsCloud

Let's put all the common forces that exist for these types of questions (tension and weight) on a labelled diagram. Remember that weight is equal to $mass \times gravity$.

For your course our assumptions are that:

- the tensions are the same on both sides of the pulley (since pulley is smooth)
- the accelerations are the same on both sides of the pulley (since string is inextensible)

We are told A is heavier so A must move moves downwards, so we know the directions of the accelerations (A moves downwards which means B moves upwards)

Let's build our equations for each object (object A and object B) before worrying about what the question is asking for. What they are asking for will come out if we build the equations correctly. We can ignore the purple tensions since they are acting on the pulley and we aren't needing to consider the pulley for this question (this is only when the questions talks about the forces exerted on the pulley).

Consider A:	
Consider A.	Consider B:
Take ↓ as positive since A is moving downwards	Take 1 as positive since going B is moving upwards
This means every force going downwards is a positive sign	This means every force going upwards is a positive
and every force going upwards is a negative sign	sign and every force going downwards is a negative
	sign
Follow the template $f = ma$	
	Follow the template $f = ma$
$\downarrow: -T + 15g = 15a (1)$	
	$\uparrow: T - 12g = 12a (2)$
ptice how we have 2 equations and 2 unknowns, so we can fir	nd both T and a . Rememebr that g is not an unknown,
avity which we know is 9.8.	
1 - 12g =	
Way 1: Use elimination	Way 2: re-arrange both equations for T and set
Way 1: Use elimination	Way 2: re-arrange both equations for T and set them equal
Way 1: Use elimination -T + 15g = 15a (1)	Way 2: re-arrange both equations for T and set them equal
Way 1: Use elimination -T + 15g = 15a (1) $T - 12g = 12a(2)$	Way 2: re-arrange both equations for T and set them equal T= 15g - 15a
Way 1: Use elimination -T + 15g = 15a (1) $T - 12g = 12a (2)$	Way 2: re-arrange both equations for T and set them equal T = 15g - 15a T = 12g + 12a
Way 1: Use elimination -T + 15g = 15a $T - 12g = 12a$ You can re-arrange to make the equations look more	Way 2: re-arrange both equations for T and set them equal T = 15g - 15a T = 12g + 12a
Way 1: Use elimination $-T + 15g = 15a$ ① $T - 12g = 12a$ ②You can re-arrange to make the equations look more familiar if you like	Way 2: re-arrange both equations for T and set them equal T = 15g - 15a T = 12g + 12a Now we can set both equations equal
Way 1: Use elimination $-T + 15g = 15a$ ① $T - 12g = 12a$ ②You can re-arrange to make the equations look more familiar if you like (have the variables on the left and numbers on the right)	Way 2: re-arrange both equations for T and set them equal T=15g-15a T=12g+12a Now we can set both equations equal
Way 1: Use elimination -T + 15g = 15a (1) $T - 12g = 12a(2)$ You can re-arrange to make the equations look more familiar if you like (have the variables on the left and numbers on the right)	Way 2: re-arrange both equations for T and set them equal T = 15g - 15a T = 12g + 12a Now we can set both equations equal 15g - 15a = 12g + 12a
Way 1: Use elimination -T + 15g = 15a (1) $T - 12g = 12a(2)$ You can re-arrange to make the equations look more familiar if you like (have the variables on the left and numbers on the right) -T - 15a = -15g(1)	Way 2: re-arrange both equations for T and set them equal T = 15g - 15a T = 12g + 12a Now we can set both equations equal 15g - 15a = 12g + 12a

Now we add in order to eliminate T

-27a = -3g

 $a = \frac{3}{27}g = \frac{1}{9}(9.8) = 1.089$

Group common terms

$$-27a = -3g$$

$$a = \frac{3}{27}g = \frac{1}{9}(9.8) = 1.09$$

Sub this into any equation

© MyMathsCloud

tensions are the same since smooth also).

© MyMathsCloud

1.2 Horizontal - Known Masses

6)

ii.

Let's put all the common forces that exist for these types of questions (tension, weight and now friction) on a labelled diagram. Remember that weight is equal to $mass \times gravity$ and friction only exists if the surface is rough. Here we have a smooth table and hence no friction.

For your course our assumptions are that:

- the tensions are the same on both sides of the pulley (since pulley is smooth)
- the accelerations are the same on both sides of the pulley (since string is inextensible)

Let's build our equations for each object (object A and object B) before worrying about what the question is asking for. What they are asking for will come out if we build the equations correctly. We can ignore the purple tensions since they are acting on the pulley and we aren't needing to consider the pulley for this question (this is only when the questions talks about the forces exerted on the pulley).

Conside (we have to look at 2 direct i	Consider A (we have to look at 2 directions now since we have forces in the horizontal AND vertical direction)				
forces in the horizontal Al					
Vertical:	Horizontal	Vertical:			
Take 1 as positive	Take → as positive since moving right. This means every force	Take↓as positive since moving downwards. This means every force going downwards is a			
There is no acceleration	going to the right is a	positive sign and every force			
(hence $a = 0$) in this	positive sign and every	going upwards is a negative sign			
direction since the motion is horizontal	force going to the left is a negative sign	$\downarrow: -T + 3mg = 3ma$			
$\uparrow: R - 2mg = 2(0)$	$\rightarrow: T = 2ma$ (2)	T = 3mg - 3ma			
R=2mg(1)					
	We had the following equation	ons			
	R = 2mg (1) T = 2ma (2) T = 3mg - 3ma (2)	3			
We can	We can set (2) and (3) equal to find the tension				
	2ma = 3mg - 3ma				
	Cancel an $m{m}$ from all terms				
	2a = 3g - 3a				

© MyMathsCloud

iii.

We can sub a into (3) to find T

 $a = \frac{3}{5}g = 5.88 \, ms^{-2}$

$$T = 3mg - 3ma (3)$$
$$T = 3mg - 3m\left(\frac{3}{5}g\right)$$
$$T = 3mg - \frac{9}{5}mg$$
$$T = \frac{6}{5}mg$$

Can't simplify further since don't know the know the mass m

iii.

We now have to consider the purple tensions since they are acting on the pulley and the question wants the forces exerted **on the pulley**.

7)

Let's put all the common forces that exist for these types of questions (tension, weight and now friction) on a labelled diagram. Remember that weight is equal to $mass \times gravity$ and friction only exists if the surface is rough.

For your course our assumptions are that:

- the tensions are the same on both sides of the pulley (since pulley is smooth)
- the accelerations are the same on both sides of the pulley (since string is inextensible)

1.2.1 With SUVAT – Finding the Acceleration / Time Taken To Hit The Pulley

8)

© MyMathsCloud

T = 2.5a + k (2) We have too many unknowns to solve these. We have enough info though to use SUVAT in order to find a first S=0.8 U=0 V= A= T=0.75 $s = ut + \frac{1}{2}at^2$ $0.8 = (0)(0.75) + \frac{1}{2}a(0.75)^2$ $a=2.84\,ms^{-2}$ ii. We had the following equations R = 2.5g (1)T = 2.5a + k (2)T = 1.5g - 1.5a (3)We can sub a in now to (3) to find the tension T = 1.5g - 1.5a (3) T = 1.5g - 1.5(2.844) = 10.434T = 10.4 Niii. We can sub a and T into (2) to find kT = 2.5a + k(2)10.4 = 2.5(2.844) + k10.4 = 7.11 + kk = 3.29 NNote: Notice how we didn't need (1) to solve ii or iii iv. The acceleration the same on both sides of pulley

www.mymathscloud.com © MyMathsCloud

Total time =0.6+0.436=1.04s

*once the string went slack (i.e. once B hit the ground) we needed to find the new acceleration. This will not be due to gravity like for the vertical pulleys, since A is moving horizontally and gravity only acts vertically! We re-resolve to find the new acceleration. We do what we did when we considered A horizontally last time, except we delete

T since no tension in the strong

iii.

rope is light and inextensible and pulley is smooth

© MyMathsCloud

2 Silver

2.1 Vertical – Unknown Masses

10)

Let's put all the common forces that exist for these types of questions (tension and weight) on a labelled diagram. Remember that weight is equal to mass × gravity.

For your course our assumptions are that:

- the tensions are the same on both sides of the pulley (since pulley is smooth)
- the accelerations are the same on both sides of the pulley (since string is inextensible)

We are told P moves downwards so we know the directions of the accelerations (P moves downwards which means Q moves upwards)

Let's build our equations for each object (object P and Object Q) before worrying about what the question is asking for. What they are asking for will come out if we build the equations correctly. We can ignore the purple tensions since they are acting on the pulley and we aren't needing to consider the pulley for this question (this is only when the questions talks about the forces exerted on the pulley).

Consider Q:
Take 1 as positive since going Q is moving upwards
This means every force going upwards is a positive
sign and every force going downwards is a negative
sign
Follow the template $f = ma$
\uparrow T $lma - lm (5g)$

Notice how we have 2 equations and 3 unknowns, so we will never be able to find all unknowns in terms of a number (this is why the best we can do is get T in term of m)

Let's solve simultaneously

Way 1: work on one equation at a time	Way 2: re-arrange both equations for T and set
	them equal (BETTER METHOD)
(1) tells us that $-T + 2mg = 2m\left(\frac{5g}{2}\right)$	

2.1.1 With SUVAT – Greatest Height and Taut Again

© MyMathsCloud

2.2 Horizontal

2.2.1 With Friction (year 2 only)

12)

Let's put all the common forces that exist for these types of questions (tension, weight and now friction) on a labelled diagram. Remember that weight is equal to mass \times gravity and friction only exists if the surface is rough. Here we have a rough table and hence friction.

For your course our assumptions are that:

- the tensions are the same on both sides of the pulley (since pulley is smooth)
- the accelerations are the same on both sides of the pulley (since string is inextensible)

© MyMathsCloud

3 Gold

3.1 Vertical

3.1.1 Using SUVAT Multiple Times

13)

Consider Q:

Take \downarrow as positive since B is moving downwards

This means every force going upwards is a negative

and every force going downwards is a positive

Using template F = ma we get

 $\downarrow: -T + 3mg = 3m\left(\frac{1}{2}g\right)(2)$

i. Solve (1) and (2) simultaneously by re-arranging both for T $T = \frac{4}{3} kmg$ T = 2mg

 $2mg = \frac{4}{3}kmg$ $k = \frac{3}{2} = 1.5$ T = 2mg N

ii. Tension the same on both sides of the string iii.

Consider P:

Take 1 as positive since A is moving upwards

This means every force going upwards is a positive

and every force going upwards is a negative

Using template F = ma we get

 $\uparrow: T - kmg = km\left(\frac{1}{2}g\right)$

3.1.2 More Than 1 Tension (suspended Pulleys)

3.1.3 With SUVAT - Speed hits the pulley and total distance travelled

© MyMathsCloud

3.1.4 With Friction (year 2 only)

Г

www.mymathscloud.com

Veu 1. Teles deux te he nesitive sense	May 2. Taka up ta ha pasitiva sanas
vay 1: Take down to be positive sense	way 2: Take up to be positive sense
S=0.5	S = -0.5
U= 1.4	$\cup = 1.4$
$\lor = v$	$\lor = v$
A = 9.8 (since due to gravity)	A = -9.8
Τ=	Τ=
$v^2 = u^2 + 2as$	$v^2 = u^2 + 2as$
$v^2 = 1.4^2 + 2(9.8)(0.5)$	$v^2 = 1.4^2 + 2(-9.8)(-0.5)$
$v = 3.43 ms^{-1}$	$v = 3.43 ms^{-1}$

19)

Let's put all the common forces that exist for these types of questions (tension, weight and now friction) on a labelled diagram. Remember that weight is equal to $mass \times gravity$ and friction only exists if the surface is rough. Here we have a rough table and hence friction.

For your course our assumptions are that:

- the tensions are the same on both sides of the pulley (since pulley is smooth)
- the accelerations are the same on both sides of the pulley (since string is inextensible)

Let's build our equations for each object (object A and object B) before worrying about what the question is asking for. What they are asking for will come out if we build the equations correctly. We can ignore the purple tensions since they are acting on the pulley and we aren't needing to consider the pulley for this question (this is only when the questions talks about the forces exerted on the pulley).

Conside (we have to look at 2 directi forces in the horizontal Al	r A ons now since we have ND vertical direction)	Consider B: (we only look at the vertical direction since we only have forces in this direction)
Vertical:	Horizontal	Vertical:
Take 1 as positive	Take \rightarrow as positive since moving right.	Take↓as positive since moving downwards. This means every
There is no acceleration	This means every force	force going downwards is a
(hence $a = 0$) in this	going to the right is a	positive sign and every force
direction since the motion is	positive sign and every	going upwards is a negative sign
horizontal	force going to the left is	
	a negative sign	$\downarrow: -T + 2mq = 2m\left(\frac{4}{-g}\right)$
$\uparrow: R - mg = 2(0)$		<i>b</i> (9 ⁹)
R = mg (1)	$\rightarrow: T - F = m\left(\frac{4}{9}\mathrm{g}\right)$	$T = 2mg - \frac{8}{9}mg$
	$T = \frac{4}{2}mg + F(2)$	

© MyMathsCloud

*once the string went slack (i.e. once B hit the ground) we needed to find the new acceleration. This will not be due to gravity like for the vertical pulleys, since A is moving horizontally and gravity only acts vertically! We re-resolve to find the new acceleration. We do what we did when we considered A horizontally last time, except we delete T since no tension in the string. $\rightarrow : \mathcal{T} - F = m(a)$ Deleting T gives

$$-F = ma$$

Let's also use $F = \mu R = \frac{2}{3}R$

 $a = \frac{-F}{m}$

$$a = \frac{-\frac{2}{3}R}{m}$$

Let's also use R = mg (1)

$$a = \frac{-\frac{2}{3}(mg)}{m}$$

 $a = -\frac{2}{3}mg$

iv.

same tension on both sides of pulley

© MyMathsCloud

4 Diamond

4.1 Vertical

4.1.1 SUVAT Many Times (Hardest SUVAT Type)

20)

© MyMathsCloud

iii.

T - 2mg = 2ma (1) -T + 5mg = 5ma (2)

Let's re-arrange both for T and set them equal

T = 2ma + 2mg (1)T = 5mg - 5ma (2)

2ma + 2mg = 5mg - 5ma

Cancel the $m^\prime s$ from each term

2a + 2g = 5g - 5a

7a = 3g

 $a = \frac{3}{7}g = 4.2$

First we consider Q to find v, since the speed Q hits the ground is the starting speed for P

Now use SUVAT to get *h*

$$S = h$$

$$U = 0$$

$$V = v$$

A = 4.2 (looking at downwards motion only so accel is positive)

$$T = t$$

$$v^{2} = u^{2} + 2as$$

$$v^{2} = 0^{2} + 2(4.2)h$$

$$v^{2} = 8.4 h$$

$$v = \sqrt{8.4h}$$

Once Q hits the ground, P moves up a bit more since the string is slack and allows P to move up a bit. P then reaches its greatest speed and comes to rest.

Next we consider P

S = s $U = \sqrt{8.4 h}$ V = 0 (comes to rest) a = -9.8 (string slack so accel is due to gravity) T = t

 $v^2 = u^2 + 2as$

 $0^2 = \left(\sqrt{8.4 \, h}\right)^2 + 2(-9.8)s$

© MyMathsCloud

$$s = \frac{8.4 h}{2(9.8)} = \frac{3}{7}h$$

Total height =height originally off the ground + distance p moves (since Q moves the same distance) + extra distance Q moves

$$2h + h + \frac{3}{7}h$$
$$= \frac{24}{7}h$$

i. The distance that Q falls to the ground is not exactly h

ii. Inextensible \Rightarrow acceleration is the same on both sides of the pulley, but in reality the accelerations of P and Q would not have the same magnitude

© MyMathsCloud

c)

Don't get lost in the words! These questions are ALWAYS the same thing. Doing SUVAT on object hitting the ground to get ending speed and then doing SUVAT on object going towards pulley using the ending speed from object hitting the ground as the starting speed.

Do SUVAT first on object hitting the ground (3m and 2m)

S=d U=0 V=0 A=--**9.8**

T=

Do SUVAT for object going towards pulley (4m).

Remember ending speed for last part of motion is starting speed for next part, like for all questions hence we know 'u' now.

We usually have acceleration due to gravity once the string goes slack, but since the objects have not hit the ground the string is not slack and hence we STILL have an accel in the system (but a different one since one object is gone hence a force is gone). This is just like horizontal pulleys where we re-resolve again to get the new accel if it is not due to gravity. This is always the case as I mentioned. Re-resolve to get new 'a' if acceleration due to gravity. So, we do the exact same thing as in A, but without the 2m force since it is gone. Usually we re-resolve without the tension, but here the string is not slack since B has not hit the ground, only one object has been removed so we just discount the 2mg weight. Hence accel not due to gravity and we re-resolve to get 'a' just like we do with horizontal Pulleys. We did mention it with horizontal pulleys that we might have to re-arrange for a new accel in system and anytime accel is not due to gravity then re-resolve, so you should really have done this.

Consider 4 m force	Consider 3m and 2m force
$\uparrow: T - 4mg = 4ma$	Consider 3m and 2m force:
T = 4ma + 4mg	$\downarrow: -T + 3mg + 2mg = (2+3)ma$
	-T + 3mg = 3ma
	T = 3mg - 3ma

4ma + 4mg = 3mg - 3ma

$$mg = -7ma$$

$$g = -7a$$

$$a = -\frac{g}{7}$$

Now we are ready to do SUVAT S=s

$$U = \sqrt{\frac{2gd}{9}}$$

V=0 (comes to rest)
$$\Delta =$$

Τ=

 $v^2 = u^2 + 2as$

$$0^2 = \left(\sqrt{\frac{2gd}{9}}\right)^2 + 2\left(-\frac{g}{7}\right)s$$

C	M١	/MathsCl	oud
J		, wiath 3Ci	ouu

$0 = \frac{2gd^2}{9} - \frac{2gs}{7}$
$\frac{2gs}{7} = \frac{2gd}{9}$
$\frac{2s}{7} = \frac{2d}{9}$
14d = 18s
$s = \frac{7d}{9}$

23)

© MyMathsCloud

4.2 Horizontal

4.2.1 SUVAT Many Times (Hardest SUVAT Type)

24)

Way 1:		Way 2: Longer
Cons	ider P	Consider P
2 11	⇒= = 0	S=
V:	= v	$\vee = v$
A=	2.48	A= 2.48
T=	0.5	T= 0.5
v = u + at v = 0 + 2.48(0.5) = 1.24		v = u + at v = 0 + 2.48(0.5) = 1.24
s = ut	$+\frac{1}{2}at^2$	$s = ut + \frac{1}{2}at^2$
$s = (0)(0.5) + \frac{1}{-6}$	$(2.48)(0.5)^2 = 0.31$	-
2		$s = (0)(0.5) + \frac{1}{2}(2.48)(0.5)^2 = 0.31$
Now str	ng breaks	Z
Cons	ider O	Consider O
Conc		Let's find how much more Q moves up
Q has moved up by what P moved to	the left and now needs to move down	
again. Don't forget that it was alread	ady 2 <i>m</i> off the ground before P even	S= <i>s</i>
more so we ne	ed to add this on	U=1.24
Way 1: Take down to be positive	Way 2: Take up to be positive	V = 0 A= -9.8 (due to gravity)
sense	sense	T=
S = 2 + 0.31 = 2.31	S = -(2 + 0.31) = -2.31	$v^2 = u^2 + 2as$
$\bigcup = -1.24$	U = 1.24	$0^2 - 124^2 + 2(-0.0)_{0}$
v = v A= 9.8 (due to gravity)	v = v A= -9.8 (due to gravity)	0 = 1.24 + 2(-9.8)s
A = 9.8 (due to gravity) T=	T=	<i>s</i> = 0.0784
$s = ut + \frac{1}{2}at^2$	$s = ut + \frac{1}{2}at^2$	Let's find how long it takes Q to come to rest (at the top and again when it has hit the ground)
1 -	$-2.31 = 1.24t + \frac{1}{2}(-9.8)t^2$	Take downwards to be positive
$2.31 = (-1.24)t + \frac{1}{2}(9.8)t^2$		S = 2 + 0.31 + 0.0784 = 2.3884
t = 0.825 = 0.572	t = 0.825, -0.572	$\bigcup = 0$
$\iota = 0.023, = 0.372$	<i>t</i> cant be negative	V=
t cant be negative	+ - 0.02E	A= 9.8 (due to gravity) $T=$
t = 0.825	$\iota = 0.025$	
		$s = ut + \frac{1}{2}at^2$
		$2.3884 = 0 + \frac{1}{2}(9.8)t^{-1}$
		$t = \pm 0.698$
		$t \ge 0$, so t = 0.698
		But we also need to add on the time, t/, it takes for
		O to decelerate to 0 at its summing t , it takes to

© MyMathsCloud

U= 1.24 $\vee = 0$ A = -9.8 (due to gravity) T= $\begin{array}{l} v=u+at'\\ 0=1.24-9.8t' \end{array}$ $t'\approx 0.1265$ The total time is $0.1265 + 0.698 \approx 0.825$ iv. Consider Q S = -(2 + 0.31) = -2.31U = 1.24 $\vee =$ A = -9.8 (due to gravity) T= $v^2 = u^2 + 2as$ $v^2 = 1.24^2 + 2(-9.8)(-2.31)$ $v = 6.84 \, ms^{-1}$ v. R-2g=2(0)R = 19.6vi. Include a more accurate value for gInclude a variable resistance in the model rather than a constant ٠ Include the dimension of the pulley in the model so that the string is not parallel to the table Include a frictional force at the pulley ٠

4.2.2 Harder Algebra

© MyMathsCloud

4.3 Vertical - 2 Pulleys and Diagonal Forces (year 2 only)

26)

27)

© MyMathsCloud

We simplify both sides	
$w^{2} \cos^{2} \beta + w^{2} \sin^{2} \beta = 30.25 \sin^{2} \beta + 53.29 - 80.3 \cos \beta + 30.25 \cos^{2} \beta$	
$w^2 = 30.25(1) + 53.29 - 80.3 \cos \beta$	
$w^{2} = 83.59 - 80.3 \cos \beta$ $w^{2} = 83.59 - 80.3 \cos 41.1$ $w^{2} = 23.3$ w = 4.8	
angle $AP_1X = \beta = 41.1^\circ$	

28)

		α β T_2 γ T_2 γ γ γ γ γ γ	T ₂ T ₂
	Consider pink	Consider blue	
	$\uparrow: T_1 - 5 = \frac{5}{g}(0)$ $T_1 = 5$	$\uparrow: T_2 - 7 = \frac{7}{g}(0)$ $T_2 = 7$	
Way 1: Resolving (best method)	Way 2: Lami's Metho	od	Way 3: Vector Triangle

Consider pink	Consider blue
$\uparrow: T_1 - 0.3g = 0.3(0) T_1 = 0.3g$	$\uparrow: T_2 - 0.5g = 0.5(0) T_2 = 0.5g$

© MyMathsCloud

 $b^2 - 4ac \ge 0$ since m is real

© MyMathsCloud

 $(-\cos \alpha)^2 - 4(1)(0.16) \ge 0$ $\cos^2 \alpha \ge 0.64$ $-0.8 \le \cos \alpha \le 0.8$ $\cos \alpha < 0.8$

If using way 3:

the length of any one side of the triangle of forces cannot exceed the sum of the length of the other two sides. The case m = 0.8 is excluded because the pulleys are not in the same vertical line

iii.

The easiest method is to use our vector triangle formula from above.

$$\cos\beta = \frac{m^2 - 0.16}{0.6m} = \frac{11}{14}$$

If we substitute m = 0.4, $\cos\beta = 0$, $\beta = 90$, so the string at the right is horizontal.

iv. *K* cannot be above the level of the pulleys