Pulleys - Vertical \& Horizontal

Table of Contents

1 Bronze 2
1.1 Vertical 2
1.2 Horizontal. 9
2 Silver. 14
2.1 Vertical 14
2.2 Horizontal 18
3 Gold 21
3.1 Vertical 21
3.2 Horizontal. 25
4 Diamond 33
4.1 Vertical 33
4.2 Vertical - Diagonal Forces 41

1 Bronze

1.1 Vertical

1)

Let's put all the common forces that exist for these types of questions (tension and weight) on a labelled diagram. Remember that weight is equal to mass \times gravity.

For your course our assumptions are that:

- the tensions are the same on both sides of the pulley (since pulley is smooth)
- the accelerations are the same on both sides of the pulley (since string is inextensible)

We are told A moves downwards so we know the directions of the accelerations (A moves downwards which means B moves upwards)

Let's build our equations for each object (object A and object B) before worrying about what the question is asking for. What they are asking for will come out if we build the equations correctly. We can ignore the purple tensions since they are acting on the pulley and we aren't needing to consider the pulley for this question (this is only when the questions talks about the forces exerted on the pulley).

Consider A:
 Take \downarrow as positive since A is moving downwards

This means every force going downwards is a positive sign and every force going upwards is
a negative sign

Note: we could have taken \uparrow as positive, but then it means we'd have to make accel a neg sign in the equation below)

$$
\text { Follow the template } f=m a
$$

$$
\downarrow:-T+3 g=3 a
$$

Take \uparrow as positive since going B is moving upwards
This means every force going upwards is a positive sign and every force going downwards

> is a negative sign

Note: we could have taken \downarrow as positive, but then it means we'd have to make accel a neg sign in the equation below)

Follow the template $f=m a$
$\uparrow: T-2 g=2 a(2)$

Notice how we have 2 equations and 2 unknowns, so we can find both T and a. Rememebr that g is not an unknown, it is gravity which we know is 9.8.

Let's solve our equations simultaneously

$$
\begin{gathered}
-T+3 g=3 a \\
T-2 g=2 a
\end{gathered}
$$

$$
\begin{gathered}
\text { Way 1: Use elimination } \\
\begin{array}{c}
-T+3 g=3 a \\
T-2 g=2 a
\end{array}
\end{gathered}
$$

You can re-arrange to make the equations look more familiar if you like (have the variables on the left and numbers on the right)

$$
\begin{aligned}
-T-3 a & =-3 g \\
T-2 a & =2 g(2)
\end{aligned}
$$

Now we add in order to eliminate T

$$
\begin{gathered}
-5 a=-g \\
a=\frac{1}{5} g=\frac{1}{5}(9.8)=1.96
\end{gathered}
$$

Sub this into any equation

$$
\text { Let's choose }-T+3 g=3 a
$$

$$
-T+3 g=3(1.96)
$$

$$
T=3 g-3(1.96)=23.52 N
$$

Way 2: re-arrange both equations for T and set them equal

$$
\begin{gathered}
T=3 g-3 a \\
T=2 g+2 a
\end{gathered}
$$

Now we can set both equations equal

$$
3 g-3 a=2 g+2 a
$$

Group common terms

$$
\begin{gathered}
5 a=g \\
a=\frac{1}{5} g=\frac{1}{5}(9.8)=1.96
\end{gathered}
$$

Sub this into any equation
Let's choose $-T+3 g=3 a$ (1)

$$
-T+3 g=3(1.96)
$$

$$
T=3 g-3(1.96)=23.52 N
$$

2)

Let's put all the common forces that exist for these types of questions (tension and weight) on a labelled diagram. Remember that weight is equal to mass \times gravity.

For your course our assumptions are that:

- the tensions are the same on both sides of the pulley (since pulley is smooth)
- the accelerations are the same on both sides of the pulley (since string is inextensible)

We are told P moves downwards so we know the directions of the accelerations (P moves downwards which means Q moves upwards)

Let's build our equations for each object (object P and Object Q) before worrying about what the question is asking for. What they are asking for will come out if we build the equations correctly. We can ignore the purple tensions since they are acting on the pulley and we aren't needing to consider the pulley for this question (this is only when the questions talks about the forces exerted on the pulley).

Consider P:	Consider Q:
Take \downarrow as positive since P is moving downwards	Take \uparrow as positive since going Q is moving
upwards	

This means every force going downwards is a
positive sign and every force going upwards is
a negative sign

Follow the template $f=m a$

$\downarrow:-T+2 m g=2 m\left(\frac{5 g}{7}\right)$ (1) | This means every force going upwards is a |
| :---: |
| positive sign and every force going downwards the template $f=m a$ |
| is a negative sign |

Notice how we have 2 equations and 3 unknowns, so we will never be able to find all unknowns in terms of a number (this is why the best we can do is get T in term of m)

Let's solve simultaneously

Way 1: work on one equation at a time
(1) tells us that $-T+2 m g=2 m\left(\frac{5 g}{7}\right)$

Re-arranging for T gives

$$
T=2 m g-\frac{10}{7} m g
$$

$$
T=\frac{4}{7} m g
$$

Plug Tinto (2)
$\frac{4}{7} m g-k m g=k m\left(\frac{5 g}{7}\right)$

Cancel an m and g from each term
$\frac{4}{7}-k=\frac{5}{7} k$
Solve for k
$\frac{12}{7} k=\frac{4}{7}$
$k=\frac{\frac{4}{7}}{\frac{12}{7}}=\frac{4}{12}=\frac{1}{3}$

So, now we can answer the question
i.
$T=\frac{4}{7} m g$
ii. The string is modelled as inextensible
iii.
$k=\frac{1}{3}$
iv.

The pulley may not be smooth

Let's put all the common forces that exist for these types of questions (tension and weight) on a labelled diagram. Remember that weight is equal to mass \times gravity.

For your course our assumptions are that:

- the tensions are the same on both sides of the pulley (since pulley is smooth)
- the accelerations are the same on both sides of the pulley (since string is inextensible)

We are told A is heavier so A must move moves downwards, so we know the directions of the accelerations (A moves downwards which means B moves upwards)

Let's build our equations for each object (object A and object B) before worrying about what the question is asking for. What they are asking for will come out if we build the equations correctly. We can ignore the purple tensions since they are acting on the pulley and we aren't needing to consider the pulley for this question (this is only when the questions talks about the forces exerted on the pulley).

Notice how we have 2 equations and 2 unknowns, so we can find both T and a. Rememebr that g is not an unknown, it is gravity which we know is 9.8.

Let's solve our equations simultaneously

$$
\begin{gathered}
-T+15 g=15 a \\
T-12 g=12 a
\end{gathered}
$$

$$
\begin{aligned}
& \text { Way 1: Use elimination } \\
& \begin{array}{c}
-T+15 g=15 a \\
T-12 g=12 a
\end{array}
\end{aligned}
$$

You can re-arrange to make the equations look more familiar if you like (have the variables on the left and numbers on the right)

$$
\begin{aligned}
-T-15 a & =-15 g(1) \\
T-12 a & =12 g(2)
\end{aligned}
$$

Way 2: re-arrange both equations for T and set them equal

$$
\begin{gathered}
T=15 g-15 a \\
T=12 g+12 a
\end{gathered}
$$

Now we can set both equations equal

$$
15 g-15 a=12 g+12 a
$$

> Group common terms

Now we add in order to eliminate T

$$
-27 a=-3 g
$$

$-27 a=-3 g$	$a=\frac{3}{27} g=\frac{1}{9}(9.8)=1.09$
$a=\frac{3}{27} g=\frac{1}{9}(9.8)=1.089$	
Sub this into any equation	Sub this into any equation
Let's choose $-T+15 g=15 a(1)$	$-T+15 g=15(1.09)$
$-T+15 g=15(1.09)$	$T=15 g-15(1.09)=130.7 \mathrm{~N}$
$T=15 g-15(1.09)=130.7 N$	

i.

$$
a=1.089, T=130.7 \mathrm{~N}
$$

ii.

Let's look at what is happening in words and then a picture

- Firstly A moves down to hit the ground
- Secondly once A hits the ground the string goes slack and therefore the string has some give in it and B can move up a little bit more before it comes to rest

The important part here is to realise that:

- the speed that A hits the ground in the middle diagram below will be the starting speed for the next motion for B when it moves up slightly in the right most diagram
- Once A hits the ground, the string is slack and therefore the acceleration is no longer the acceleration in the system (it is due to gravity instead and always equal to -9.8)

Now a picture:

(1)
(2)
Consider A
$\mathrm{S}=6$
$\mathrm{U}=0$
$\mathrm{~V}=v$
$\mathrm{~A}=1.089$
$\mathrm{~T}=1.2$
$v^{2}=u^{2}+2 a s$
$v^{2}=0^{2}+2(1.089)(6)$
$v=3.615$

$$
\begin{gathered}
\text { Consider B } \\
\mathrm{S}=S_{B} \\
\mathrm{U}=3.615 \\
\mathrm{~V}=0 \text { (at rest) } \\
\mathrm{A}=-9.8 \text { (string slack) } \\
\mathrm{T}=t \\
v=u+a t \\
0=3.615-9.8 t \\
t=0.369 \\
\\
v^{2}=u^{2}+2 a s \\
\mathbf{0}^{2}=3.615^{2}+2(-9.8) S_{B} \\
S_{B}=0.667
\end{gathered}
$$

iv.

It means negligible mass of string and for vertical systems this means the acceleration is the same on both sides of the pulley (and the tensions are the same since smooth also).

Let's put all the common forces that exist for these types of questions (tension and weight) on a labelled diagram. Remember that weight is equal to mass \times gravity.

For your course our assumptions are that:

- the tensions are the same on both sides of the pulley (since pulley is smooth)
- the accelerations are the same on both sides of the pulley (since string is inextensible)

We know that $7>5$ so the 7 kg mass must move moves downwards. This means we know the directions of the accelerations (The 7 kg mass moves downwards which means the 5 kg mass moves upwards)

Let's build our equations for each object (object with 5 kg mass and object with 7 kg mass) before worrying about what the question is asking for. What they are asking for will come out if we build the equations correctly. We can ignore the purple tensions since they are acting on the pulley and we aren't needing to consider the pulley for this question (this is only when the questions talks about the forces exerted on the pulley).

```
Consider the 5 kg mass:
    Take }\uparrow\mathrm{ as positive since moving upwards
    This means every force going upwards is a
positive sign and every force going downwards
        is a negative sign
        Follow the template f=ma
        \downarrow:T-5g=5a(1)
```

Consider the 7 kg mass:
Take \downarrow as positive since moving downwards This means every force going downwards is a positive sign and every force going upwards is
a negative sign

Follow the template $f=m a$

$$
\uparrow:-T+7 g=7 a
$$

Notice how we have 2 equations and 2 unknowns, so we can find both T and a. Rememebr that g is not an unknown, it is gravity which we know is 9.8.

Let's solve our equations simultaneously

$$
T-5 g=5 a
$$

Way 1: Use elimination

$$
\begin{gathered}
T-5 g=5 a \\
-T+7 g=7 a
\end{gathered}
$$

You can re-arrange to make the equations look more familiar if you like (have the variables on the left and numbers on the right)

$$
\begin{aligned}
T-5 a & =5 g \\
-T-7 a & =-7 g
\end{aligned}
$$

Now we add in order to eliminate T

Way 2: re-arrange both equations for T and set them

 equal$$
\begin{gathered}
T=5 a+5 g \\
T=7 g-7 a
\end{gathered}
$$

Now we can set both equations equal

$$
5 a+5 g=7 g-7 a
$$

Group common terms

$-12 a=-2 g$	$a=\frac{2}{12} g=\frac{1}{6}(9.8)=1.633$
$a=\frac{2}{12} g=\frac{1}{6}(9.8)=1.633$	
Sub this into any equation	Sub this into any equation
Let's choose $T-5 g=5 a(1)$	$T-5 g=5(1.633)$
$T-5 g=5(1.633)$	$T=5 g+5(1.633)=57.165 \mathrm{~N}$
$T=5 g+5(1.633)=57.165 \mathrm{~N}$	

i.

$$
a=1.63
$$

ii.

$$
T=57.2 N
$$

ii.

Let's look at what is happening in words and then a picture

- Firstly, the 7 kg moves down to hit the ground
- Secondly, once the 7 kg hits the ground the string goes slack and therefore the string has some give in it and the 5 kg object can move up a little bit more before it comes to rest

The important part here is to realise that:

- The speed that the 7 kg object hits the ground in the middle diagram below will be the starting speed for the next motion for the 5 kg object when it moves up slightly in the right most diagram
- Once the 7 kg object hits the ground, the string is slack and therefore the acceleration is no longer the acceleration in the system (it is due to gravity instead and always equal to -9.8)

Now a picture:

(1)
(2)

$$
\begin{gathered}
\text { Consider } 7 \mathrm{~kg} \text { object } \\
\mathrm{S}=s_{1} \\
\mathrm{U}=0 \\
\mathrm{~V}=v \\
\mathrm{~A}=1.633 \\
\mathrm{~T}=3 \\
v=u+a t \\
v=0+1.633(3) \\
v=4.899
\end{gathered}
$$

1.2 Horizontal

5)

Let's put all the common forces that exist for these types of questions (tension, weight and now friction) on a labelled diagram. Remember that weight is equal to mass \times gravity and friction only exists if the surface is rough.

For your course our assumptions are that:

- the tensions are the same on both sides of the pulley (since pulley is smooth)
- the accelerations are the same on both sides of the pulley (since string is inextensible)

Let's build our equations for each object (object A and object B) before worrying about what the question is asking for. What they are asking for will come out if we build the equations correctly. We can ignore the purple tensions since they are acting on the pulley and we aren't needing to consider the pulley for this question (this is only when the questions talks about the forces exerted on the pulley).

Consider A
(we have to look at 2 directions now since we have forces in the horizontal AND vertical direction)

Take \uparrow as positive
There is no acceleration (hence $a=$ 0) in this direction since the motion is horizontal

$$
\begin{gathered}
\uparrow: R-5 g=5(0) \\
R=5 g(1)
\end{gathered}
$$

Consider B:
(we only look at the vertical direction since we only have forces in this direction)

Vertical:
Take \downarrow as positive since moving downwards.
This means every force going downwards is a positive sign and every force going upwards is a negative sign
$\downarrow:-T+3 g=3 a$
$T=3 g-3 a$ (3)

Solve (2) and (3) simultaneously

$$
\begin{gathered}
5 a+24.5=3 g-3 a \\
8 a=4.9 \\
a=0.6125
\end{gathered}
$$

$$
\text { Sub } a \text { into (2) }
$$

$$
T=5(0.6125)+24.5=27.6 N
$$

i.

$$
a=0.6125
$$

ii.

$$
T=27.6 N
$$

iii.

We now have to consider the purple tensions since they are acting on the pulley and the question wants the forces exerted on the pulley.

Let's resolve as usual

$$
\begin{aligned}
& \uparrow=-T \\
& \rightarrow=-T
\end{aligned}
$$

Resultant $=\binom{x}{y}=\binom{\vec{\uparrow}}{\uparrow}=\binom{-T}{-T}=\binom{-27.6}{-27.6}$
$M a g=\sqrt{(-27.6)^{2}+(-27.6)^{2}}=38.979$
6)

Let's put all the common forces that exist for these types of questions (tension, weight and now friction) on a labelled diagram. Remember that weight is equal to mass \times gravity and friction only exists if the surface is rough. Here we have a rough surface so the there is friction which we told is k.

For your course our assumptions are that:

- the tensions are the same on both sides of the pulley (since pulley is smooth)
- the accelerations are the same on both sides of the pulley (since string is inextensible)

Let's build our equations for each object (object P and object Q) before worrying about what the question is asking for. What they are asking for will come out if we build the equations correctly. We can ignore the purple tensions since they are acting on the pulley and we aren't needing to consider the pulley for this question (this is only when the questions talks about the forces exerted on the pulley).

Consider P
(we have to look at 2 directions now since we have forces in the horizontal AND vertical direction) since moving right. This means every force going to the right is a positive sign and every force going to the left is a negative sign

There is no acceleration (hence $a=0$) in this direction since the motion is horizontal

Consider Q:
(we only look at the vertical direction since
we only have forces in this direction)

Take \downarrow as positive since moving downwards. This means every force going
downwards is a positive sign and every force going upwards is a negative sign

$$
\downarrow:-T+1.5 g=1.5 a
$$

$$
\begin{array}{cc}
\uparrow: R-m g=2.5(0) & T=1.5 g-1.5 a(3) \\
R=m g(1) & \rightarrow: T-k=2.5 a \\
& T=2.5 a+k(2)
\end{array}
$$

We have too many unknowns to solve these. We have enough info though to use SUVAT in order ti find a first

$$
\begin{gathered}
\mathrm{S}=0.8 \\
\mathrm{U}=0 \\
\mathrm{~V}= \\
\mathrm{A}= \\
\mathrm{T}=0.75 \\
s=u t+\frac{1}{2} a t^{2} \\
0.8=(0)(0.75)+\frac{1}{2} a(0.75)^{2} \\
a=2.84 \mathrm{~ms}^{-2}
\end{gathered}
$$

ii.

> We had the following equations

$$
\begin{gathered}
R=m g(1 \\
T=2.5 a+k(2) \\
T=1.5 g-1.5 a(3)
\end{gathered}
$$

We can sub a in now to (3) to find the tension

$$
\begin{gathered}
T=1.5 g-1.5 a \\
T=1.5 g-1.5(2.844)=10.434 \\
T=10.4 \mathrm{~N}
\end{gathered}
$$

iii.

We can sub a and T into (2) to find k

$$
\begin{gathered}
T=2.5 a+k \\
10.4=2.5(2.844)+k \\
10.4=7.11+k \\
k=3.29 \mathrm{~N}
\end{gathered}
$$

iv.

The acceleration the same on both sides of pulley
7)

Let's put all the common forces that exist for these types of questions (tension, weight and now friction) on a labelled diagram. Remember that weight is equal to mass \times gravity and friction only exists if the surface is rough. Here we have a smooth table and hence no friction.

For your course our assumptions are that:

- the tensions are the same on both sides of the pulley (since pulley is smooth)
- the accelerations are the same on both sides of the pulley (since string is inextensible)

Let's build our equations for each object (object A and object B) before worrying about what the question is asking for. What they are asking for will come out if we build the equations correctly. We can ignore the purple tensions since they are acting on the pulley and we aren't needing to consider the pulley for this question (this is only when the questions talks about the forces exerted on the pulley).

Consider A
(we have to look at $\mathbf{2}$ directions now since we have forces in the horizontal AND vertical direction)

Consider B:

(we only look at the vertical direction since we only have forces in this direction)

Vertical:

Take \uparrow as positive

There is no acceleration (hence $a=0$) in this direction since the motion is horizontal
$\uparrow: R-2 m g=2(0)$

$$
R=2 m g
$$

Horizontal

Take \rightarrow as positive
since moving right.
This means every force
going to the right is a
positive sign and every
force going to the left is
a negative sign
$\rightarrow: T=2 m a$

Vertical:
Take \downarrow as positive since moving downwards. This means every
force going downwards is a positive sign and every force going upwards is a negative sign

$$
\begin{aligned}
& \downarrow:-T+3 m g=3 m a \\
& \quad T=3 m g-3 m a
\end{aligned}
$$

ii.

We had the following equations

$$
\begin{aligned}
& R=2 m g \\
& T=2 m a \\
& T=3 m g-3 m a
\end{aligned}
$$

We can set (2) and (3) equal to find the tension

$$
2 m a=3 m g-3 m a
$$

Cancel an m from all terms

$$
\begin{aligned}
2 a & =3 g-3 a \\
5 a & =3 g \\
a & =\frac{3}{5} g
\end{aligned}
$$

iii.

We can sub a into (3) to find T

$$
\begin{gathered}
T=3 m g-3 m a \\
T=3 m g-3 m\left(\frac{3}{5} g\right) \\
T=3 m g-\frac{9}{5} m g \\
T=\frac{6}{5} m g
\end{gathered}
$$

iii.

We now have to consider the purple tensions since they are acting on the pulley and the question wants the forces exerted on the pulley.

Let's resolve as usual

$$
\begin{aligned}
& \uparrow=-T \\
& \rightarrow=-T
\end{aligned}
$$

$$
\text { Resultant }=\binom{x}{y}=\left(\begin{array}{l}
\vec{\uparrow}
\end{array}\right)=\binom{-T}{-T}=\binom{-\frac{6}{5} m g}{-\frac{6}{5} m g}
$$

Mag $=\sqrt{\left(-\frac{6}{5} m g\right)^{2}+\left(-\frac{6}{5} m g\right)^{2}}=\sqrt{\frac{36}{25} m^{2} g^{2}+\frac{36}{25} m^{2} g^{2}}=\sqrt{\frac{72}{25} m^{2} g^{2}}=\frac{\sqrt{72}}{5} m^{2} g^{2}=\frac{6 \sqrt{2}}{5} m g$
$\frac{6 \sqrt{2}}{5} m g$ acting 45 degrees below the horizontal

2 Silver

2.1 Vertical

8)

A is hitting the ground (since heavier) so we know which way the system is moving

Consider A:

Take \downarrow as positive since A is moving downwards This means every force going downwards is a positive and every force going upwards is a positive

Consider B:

Take \uparrow as positive since going B is moving upwards
This means every force not going upwards is a positive and every force going downwards is a negative

Follow the template $f=m a$
$\uparrow: T-0.15 g=0.15 a(2)$

Solve (1) and (2) simultaneously by re-arranging both for T

$$
\begin{aligned}
T & =0.35 g-0.35 a \\
T & =0.15 a+0.15 g
\end{aligned}
$$

Setting them equal

$$
\begin{gathered}
0.35 g-0.35 a=0.15 a+0.15 g \\
0.5 a=0.2 g \\
a=\frac{0.2 g}{0.5}=3.92 \mathrm{~ms}^{-2} \\
\text { Sub } a \text { into } T=0.35 g-0.35 a \\
T=0.35 g-0.35(3.92)=2.058
\end{gathered}
$$

ii.

(1) Consider A	(2) Consider B	We don't care about this motion since this is when the string becomes taut again and we aren't asked for this
$\mathrm{S}=1.6$	S=S	
$\mathrm{U}=0$	$\mathrm{U}=3.54$	
$\mathrm{V}=$	$\mathrm{V}=0$	
A=3.92	$\mathrm{A}=-9.8$ (string slack)	
$\mathrm{T}=$		
$v^{2}=u^{2}+2 a s$	$v^{2}=u^{2}+2 a s$	
$v^{2}=0^{2}+2(3.92)(1.6)$	$v^{2}=3.54^{2}+2(-9.8) s$	
$v=3.54$	$s=0.639$	

Note: B starts off of the ground so we had to add the 1.6 which it was already off from the ground originally

9)

P is hitting the ground so we know which way the system is moving

Consider P:
Take \downarrow as positive since P is moving downwards This means every force going downwards is a positive and every force going upwards is a positive

$$
\downarrow:-T_{1}+0.3 g=0.3 a \text { (1) }
$$

Consider Q :
Take \uparrow as positive since going Q is moving upwards
This means every force not going upwards is a positive and every force going downwards is a negative

$$
\uparrow: T_{1}-m g=m a
$$

i and ii.
Solve (1) and (2) simultaneously by re-arranging both for T

$$
\begin{aligned}
& T_{1}=0.3 \mathrm{~g}-0.3 \mathrm{a} \\
& T_{1}=m g+m a
\end{aligned}
$$

We have 2 equations and 3 unknowns. We need an extra equation first. Let's use SUVAT $\mathrm{S}=0.2$

$\mathrm{U}=0$

$\mathrm{V}=1.4$
A
T
$v^{2}=u^{2}+2 a s$
$1.4^{2}=0^{2}+2 a(0.2)$
$a=4.9 \mathrm{~ms}^{-2}$
i.

Sub a into $T_{1}=0.3 \mathrm{~g}-0.3 \mathrm{a}$
$T_{1}=0.3(9.8)-0.3(4.9)=1.47 \mathrm{~N}$
Sub a and T_{1} into $T_{1}=m g+m a(2)$
$1.47=m(9.8)+m(4.9)$ $m=0.1 \mathrm{~kg}$
iii.

a) consider the pulley as this wants to forces on the Pulley $\mathrm{R}(\downarrow):-T_{2}+T_{1}+T_{1}+0.5 \mathrm{~g}=0.5(0)$
$-T_{2}+2 T_{1}+0.5 g=0.5(0)$
$-T_{2}+2(1.47)+0.5 g=0.5(0)$
$T_{2}=7.84 \mathrm{~N}$
b) Pulley is now on the ground so no tension T_{1} now (string is slack)
$\mathrm{R}(\downarrow):-T_{2}+0.5 g=0.5(0)$
$-T_{2}++0.5 g=0.5(0)$
$T_{2}=4.9 \mathrm{~N}$
iv. This is an easy SUVAT since we know the height that we started off the ground and we know the speed that p hit the ground so we don't need to find these first

$3 m>2 m$ so we know which way the system is moving (the heavier object moves down)

Consider A:
Take \uparrow as positive since A is moving upwards This means every force going upwards is a positive and every force going upwards is a
negative

$$
\text { Using template } F=m a \text { we get }
$$

$$
\uparrow: T-2 m g=2 m a
$$

Consider B:

Take \downarrow as positive since B is moving downwards
This means every force going upwards is a negative and every force going downwards is a positive

$$
\begin{aligned}
& \text { Using template } F=m a \text { we get } \\
& \qquad \begin{array}{l}
\downarrow: T+3 m g=3 m a \\
T=3 m g-3 m a
\end{array}
\end{aligned}
$$

Solve (1) and (2) simultaneously by re-arranging both for T

$$
\begin{aligned}
& T=2 m g+2 m a \\
& T=3 m g-3 m a
\end{aligned}
$$

$2 m g+2 m a=3 m g-3 m a$
$2 g+2 a=3 g-3 a$
$a=\frac{g}{5}$
Sub into $T=2 m g+2 m a$
$\mathrm{T}=2 \mathrm{mg}+2 \mathrm{~m}\left(\frac{g}{5}\right)=\frac{12}{5} m g$

Greatest height:

2.2 Horizontal

11)

Let's put all the common forces that exist for these types of questions (tension, weight and now friction) on a labelled diagram. Remember that weight is equal to mass \times gravity and friction only exists if the surface is rough. Here we have a rough table and hence friction.

For your course our assumptions are that:

- the tensions are the same on both sides of the pulley (since pulley is smooth)
- the accelerations are the same on both sides of the pulley (since string is inextensible)

Let's build our equations for each object (object A and object B) before worrying about what the question is asking for. What they are asking for will come out if we build the equations correctly. We can ignore the purple tensions since they are acting on the pulley and we aren't needing to consider the pulley for this question (this is only when the questions talks about the forces exerted on the pulley).

Consider A
(we have to look at 2 directions now since we have forces in the horizontal AND vertical direction)

Consider B:
(we only look at the vertical direction since we only have
forces in this direction)
Vertical:

Take \downarrow as positive since moving downwards. This means every force going downwards is a positive sign and every force going upwards is a negative sign

$$
\downarrow:-T+2 m g=2 m\left(\frac{4}{9} \mathrm{~g}\right)
$$

$\uparrow: R-m g=2(0)$

$$
R=m g
$$

$$
\rightarrow: T-F=m\left(\frac{4}{9} \mathrm{~g}\right)
$$

$$
T=2 m g-\frac{8}{9} m g
$$

$$
T=\frac{4}{9} m g+F(2
$$

$$
T=\frac{10}{9} m g(3
$$

ii.

We had the following equations

$$
\begin{gathered}
R=m g \\
T=\frac{4}{9} m g+F(2) \\
T=\frac{10}{9} m g
\end{gathered}
$$

We also have a fourth equation: $F=\mu R$ (4)
Sub (4) and (3) into (2)

$$
\begin{gathered}
T=\frac{4}{9} m g+F(2) \\
\frac{10}{9} m g=\frac{4}{9} m g+\mu R \\
\text { Now sub in } \\
\frac{10}{9} m g=\frac{4}{9} m g+\mu(m g)
\end{gathered}
$$

We now need to solve for μ

Cancel an m and g from all terms

$$
\begin{gathered}
\frac{10}{9}=\frac{4}{9}+\mu \\
\mu=\frac{10}{9}-\frac{4}{9}=\frac{6}{9}=\frac{2}{3}
\end{gathered}
$$

iii.

(2)

> Consider B
> $\begin{gathered}\mathrm{S}\end{gathered}=\boldsymbol{h}$
> $\mathrm{U}=0$
> $\mathrm{~V}=\boldsymbol{v}$
> $\mathrm{A}=\frac{4}{9} g$
$v^{2}=u^{2}+2 a s$
$v^{2}=0^{2}+2\left(\frac{4}{9} g\right) h$
$v^{2}=\frac{8}{9} g h$

$$
v^{2}=\frac{8}{9} g \boldsymbol{h}+2\left(-\frac{2}{3} g\right)\left(\frac{1}{3} h\right)
$$

$$
v^{2}=\frac{8}{9} g h-\frac{4}{9} g h
$$

$v=\sqrt{\frac{8}{9} g h}$
$v^{2}=\frac{4}{9} g h$
$v=\sqrt{\frac{4}{9} g h}$
$v=\frac{2}{3} \sqrt{g h}$
$v=\frac{2}{3} \sqrt{g h}$
*once the string went slack (i.e. once B hit the ground) we needed to find the new acceleration. This will not be due to gravity like for the vertical pulleys, since A is moving horizontally and gravity only acts vertically! We re-resolve to find the new acceleration. We do what we did when we considered A horizontally last time, except we delete T since no tension in the string.

$$
\rightarrow: T-F=m(\mathrm{a})
$$

Deleting T gives

$$
\begin{aligned}
-F & =m a \\
a & =\frac{-F}{m}
\end{aligned}
$$

$$
\begin{gathered}
\text { Let's also use } F=\mu R=\frac{2}{3} R \\
\qquad a=\frac{-\frac{2}{3} R}{m}
\end{gathered}
$$

$$
\text { Let's also use } R=m g \text { (1) }
$$

$$
a=\frac{-\frac{2}{3}(m g)}{m}
$$

$$
a=-\frac{2}{3} m g
$$

iv.
same tension on both sides of pulley

3 Gold

3.1 Vertical

12)

Answer:
We set the total/resultant/net force which is F equal to ma for each object (pink and blue sections below)
$m>3$ so we know which way the system is moving (the heavier object moves down)

Consider A:
Take \downarrow as positive since A is moving downwards This means every force going downwards is a positive and every force going upwards is a
positive

$$
\downarrow:-T+m g=m a
$$

Consider B :
Take \uparrow as positive since B is moving upwards This means every force not going upwards is a positive and every force going downwards is a

$$
\uparrow: T-3 g=3 a \text { (2) }
$$

i.

Solve (1) and (2) simultaneously by re-arranging both for T

$$
\begin{aligned}
& T=m g-m a \\
& T=3 g+3 a
\end{aligned}
$$

We have 2 equations and 3 unknowns. We need an extra equation first. Let's use SUVAT
$\mathrm{S}=2.5$
$\mathrm{U}=0$
$\mathrm{V}=$
$\mathrm{A}=a$
$\mathrm{T}=1.25$
$s=u t+\frac{1}{2} a t^{2}$
$2.5=0+\frac{1}{2} a(1.25)^{2}$
$a=3.2$
ii and iii.
Our 2 equations become

$$
\begin{gathered}
T=m g-3.2 m \\
T=3 g+9.6
\end{gathered}
$$

$m g-3.2 m=3 g+9.6$
$6.6 m=39$

$$
\begin{aligned}
& m=\frac{65}{11} \\
& T=3 g+9.6 \text { gives } T=39 \mathrm{~N}
\end{aligned}
$$

iv and v .

vi. we need to consider the forces acting on the pulley now

$$
\downarrow=T+T
$$

$$
\rightarrow=0
$$

$$
\text { Resultant }=\binom{x}{y}=\binom{\rightarrow}{\uparrow}=\binom{0}{2 T}=\binom{0}{2(39)}=\binom{0}{78}
$$

$\mathrm{Mag}=\sqrt{0^{2}+78^{2}}=78 \mathrm{~N}$
13)

We set the total/resultant/net force which is F equal to ma for each object (pink and blue sections below) $k<5$ so we know which way the system is moving (the heavier object moves down)

Consider A:
Take \downarrow as positive since A is moving downwards This means every force going downwards is a positive and every force going upwards is a positive

$$
\downarrow:-T+5 m g=5 m\left(\frac{1}{4} g\right)
$$

Consider B:

Take \uparrow as positive since B is moving upwards This means every force not going upwards is a positive and every force going downwards is a negative

$$
\uparrow: T-k m g=k m\left(\frac{1}{4} g\right)(2)
$$

i. and ii.

Solve (1) and (2) simultaneously by re-arranging both for T

$$
\begin{aligned}
T & =5 m g-\frac{5}{4} m g \\
T & =k m g+\frac{1}{4} k m g
\end{aligned}
$$

$$
5 m g-\frac{5}{4} m g=k m g+\frac{1}{4} k m g
$$

$$
\text { We can cancel the } m^{\prime} s \text { and g's }
$$

$$
5-\frac{5}{4}=k+\frac{1}{4} k
$$

$$
\frac{15}{4}=\frac{5}{4} k
$$

$$
k=3
$$

$$
T=5 m g-\frac{5}{4} m g=\left(5-\frac{5}{4}\right) m g=\frac{15}{4} m g
$$

iii. The tensions are the same on both sides of the pulley
iv.

We need to do SUVAT twice to find s and v :

$$
s=u t+\frac{1}{2} a t^{2}
$$

$$
s=0+\frac{1}{2}\left(\frac{1}{4} g\right)(1.2)^{2}
$$

$$
s=1.764
$$

$$
\begin{gathered}
v=u+a t \\
v=0+\frac{1}{4} g(1.2)
\end{gathered}
$$

$v=2.94$

Consider B
$\mathrm{S}=S_{B}$
$\mathrm{U}=2.94$
$\mathrm{V}=0$
$\begin{aligned} \mathrm{A}= & =-9.8 \\ \mathrm{~T} & =t\end{aligned}$
$v^{2}=u^{2}+2 a s$
$0=2.94^{2}+2(-9.8) S_{B}$
$S_{B}=0.441$

Greatest height:

1. $764+1.764+0.441=$

Use SUVAT again
$v=u+a t$
$0=2.94-9.8 t$ $t=0.3$
14)

We set the total/resultant/net force which is F equal to ma for each object (pink and blue sections below)

$k<3$ so we know which way the system is moving (the heavier object Q moves down)

Consider P:

Take \uparrow as positive since A is moving upwards
This means every force going upwards is a positive and every force going upwards is a negative Using template $F=m a$ we get

$$
\uparrow: T-k m g=k m\left(\frac{1}{3} g\right)(1)
$$

Consider Q:

Take \downarrow as positive since B is moving downwards This means every force going upwards is a negative and every force going downwards is a positive

Using template $F=m a$ we get

$$
\downarrow:-T+3 m g=3 m\left(\frac{1}{3} g\right)(2)
$$

i. Solve (1) and (2) simultaneously by re-arranging both for T

$$
T=\frac{4}{3} \mathrm{kmg}
$$

$$
2 m g=\frac{4}{3} k m g
$$

$$
k=\frac{3}{2}=1.5
$$

$$
T=2 m g \mathrm{~N}
$$

ii. Tension the same on both sides of the string
iii.

3.2 Horizontal

15)

Let's put all the common forces that exist for these types of questions (tension, weight and now friction) on a labelled diagram. Remember that weight is equal to mass \times gravity and friction only exists if the surface is rough. Here we have a rough table and hence friction.

For your course our assumptions are that:

- the tensions are the same on both sides of the pulley (since pulley is smooth)
- the accelerations are the same on both sides of the pulley (since string is inextensible)

Let's build our equations for each object (object P and object Q) before worrying about what the question is asking for. What they are asking for will come out if we build the equations correctly. We can ignore the purple tensions since they are acting on the pulley and we aren't needing to consider the pulley for this question (this is only when the questions talks about the forces exerted on the pulley).

Consider P
(we have to look at $\mathbf{2}$ directions now since we have forces in the horizontal AND vertical direction)

Consider Q:

(we only look at the vertical direction since we only have forces in this direction)

Vertical:
Take \uparrow as positive

There is no acceleration
(hence $a=0$) in this
direction since the motion is horizontal

$$
\uparrow: R-1.5 g=1.5(0)
$$

$$
R=1.5 \mathrm{~g}
$$

$$
\rightarrow: T-F=1.5 a
$$

$$
T=1.5 a+F(2)
$$

ii.

We had the following equations

$$
\begin{gathered}
R=1.5 g \\
T=1.5 a+F \\
T=3 g-3 a
\end{gathered}
$$

We also have a fourth equation: $F=\mu R=\frac{1}{5} R$ (4)

$$
\begin{gathered}
\text { Sub 4) and (3nto } 2 \\
T=1.5 a+F(2) \\
3 g-3 a=1.5 a+\frac{1}{5} R \\
\text { Now sub in } 1 \\
3 g-3 a=1.5 a+\frac{1}{5}(1.5 \mathrm{~g}) \\
3 g-3 a=1.5 a+0.3 g \\
4.5 a=2.7 g \\
a=5.88
\end{gathered}
$$

Sub this into $T=3 g-3 a$ (3) to find T

$$
T=3 g-3(5.88)=11.76
$$

ii.

We now have to consider the purple tensions since they are acting on the pulley and the question wants the forces exerted on the pulley.

Let's resolve as usual

$$
\uparrow=-T
$$

$$
\rightarrow=-T
$$

$$
\text { Resultant }=\binom{x}{y}=\binom{\vec{\uparrow}}{\uparrow}=\binom{-T}{-T}=\binom{-11.8}{-11.8}
$$

$$
\mathrm{Mag}=\sqrt{11.8^{2}+11.8^{2}}=\sqrt{278.48}=16.7 \mathrm{~N}
$$

16)

Let's build our equations for each object (object A and object B) before worrying about what the question is asking for. What they are asking for will come out if we build the equations correctly. We can ignore the purple tensions since they are acting on the pulley and we aren't needing to consider the pulley for this question (this is only when the questions talks about the forces exerted on the pulley).

Consider A:
(we have to look at $\mathbf{2}$ directions now since we have forces in the horizontal AND vertical direction)

Consider B:
(we only look at the vertical direction since we only have forces in this direction) Vertical:

Take \downarrow as positive since moving downwards. This means every force going downwards is a positive sign and every force going upwards is a negative sign

$$
\downarrow:-T+1.2 g=1.2 a
$$

$$
T=1.2 g-1.2 a
$$

$$
\rightarrow: T-F=0.8 a
$$

$$
T=0.8 a+F
$$

i.

We had the following equations

$$
\begin{gathered}
R=0.8 g \\
T=0.8 a+F \\
T=1.2 g-1.2 a
\end{gathered}
$$

We also have a fourth equation: $F=\mu R$ (4)
We have too many unknowns, but we have been given enough info to use SUVAT first since told after release, B descends a distance of 0.9 m in 0.8 s .

$$
\begin{gathered}
\mathrm{S}=0.9 \\
\mathrm{U}=0 \\
\mathrm{~V}= \\
\mathrm{A}= \\
\mathrm{T}=0.8
\end{gathered}
$$

iv.

Sphere B is 0.9 m above the ground when the system is released. Given that A does not reach the pulley and the frictional force remains constant throughout,
i. find the total distance travelled by A (ans $=0.33+0.9=1.23 \mathrm{~m}$)

$$
\begin{gathered}
1 \\
\text { Consider B } \\
\mathrm{S}=0.9 \\
\mathrm{U}=0 \\
\mathrm{~V}=v \\
\mathrm{~A}=2.8125 \\
\mathrm{~T}=0.8
\end{gathered}
$$

(2)

$$
\begin{gathered}
\text { Consider A } \\
\mathrm{S}=S_{A} \\
\mathrm{U}=2.25 \\
\mathrm{~V}=0 \text { (comes to rest) } \\
\mathrm{A}=-7.66875 \text { (see * below) } \\
\mathrm{T}= \\
v^{2}=u^{2}+2 a \mathrm{~s} \\
0^{2}=2.25^{2}+2(-7.66875) S_{A} \\
-5.0625=-15.3375 S_{A} \\
S_{A}=0.33
\end{gathered}
$$

Total distance $=0.9+0.33=1.23 \mathrm{~m}$
*once the string went slack (i.e. once B hit the ground) we needed to find the new acceleration. This will not be due to gravity like for the vertical pulleys, since A is moving horizontally and gravity only acts vertically!

We re-resolve to find the new acceleration. We do what we did when we considered A horizontally last time, except we delete T since no tension in the strong

$$
\rightarrow: T-F=0.8 a
$$

Deleting T gives

$$
\begin{aligned}
-F & =0.8 a \\
a & =\frac{-F}{0.8}
\end{aligned}
$$

We know $\mathrm{F}=6.135$ from part iii.

$$
a=\frac{-6.135}{0.8}
$$

17)

$$
\begin{gathered}
\text { So (2) becomes } T=14 a+34.3 \\
\text { Solve (2) and (3) simultaneously: } \\
14 a+34.3=6 g-6 a \\
20 a=24.5 \\
a=1.225 \mathrm{~ms}^{-2} \\
\text { Sub } a \text { into } 22 \\
T=14(1.225)+34.3=51.45 \mathrm{~N} \\
T=51.5 \mathrm{~N}
\end{gathered}
$$

iii.

$$
\begin{gathered}
\text { Consider the } 14 \mathrm{~kg} \text { mass } \\
\mathrm{S}=0.8 \\
\mathrm{U}=0 \\
\mathrm{~V}=v \\
\mathrm{~A}=1.225 \\
\mathrm{~T} \\
v^{2}=u^{2}+2 a s \\
v^{2}=+2(1.225)(0.8)=1.4
\end{gathered}
$$

iv.

Consider the 6 kg mass

Way 1: Take down to be positive sense

$$
\begin{gathered}
\mathrm{S}=0.5 \\
\mathrm{U}=1.4 \\
\mathrm{~V}=v
\end{gathered}
$$

$A=9.8$ (since due to gravity)
$\mathrm{T}=$
$v^{2}=u^{2}+2 a s$
$v^{2}=1.4^{2}+2(9.8)(0.5)$
$v=3.43 \mathrm{~ms}^{-1}$

Way 2: Take up to be positive sense

$$
\begin{gathered}
\mathrm{S}=-0.5 \\
\mathrm{U}=1.4 \\
\mathrm{~V}=v \\
\mathrm{~A}=-9.8 \\
\mathrm{~T}= \\
v^{2}=u^{2}+2 a s \\
v^{2}=1.4^{2}+2(-9.8)(-0.5) \\
v=3.43 \mathrm{~ms}^{-1}
\end{gathered}
$$

18)

Smooth table hence no friction

Consider object P :
(we have to look at 2 directions since we have forces in the horizontal and vertical direction) Vertical: Horizontal Take \uparrow as positive Take \rightarrow as positive
(we only look at the vertical direction since only have forces in this direction) Vertical:
Take \downarrow as positive

```
There is no acceleration in this
    direction since the motion is
        horizontal
        ->:T=0.8a
        \downarrow: -T+0.6g=0.6a
    T=0.6g-0.6a(3)
\uparrow:R-0.8g=0.8(0)
    R=0.8g (1
i.
```


We had the following equations

```
\[
\begin{gathered}
R=0.8 g \\
T=0.8 a \\
T=0.6 g-0.6 a
\end{gathered}
\]
Let's set (2) and (3) equal
\[
0.8 a=0.6 g-0.6 a
\]
\[
1.4 a=0.6 g
\]
\[
a=\frac{0.6 g}{1.4}
\]
\[
a=4.2
\]
\[
4.2 \mathrm{~ms}^{-2}
\]
ii.
```


(1)

(1)

Consider B
$S=0.4$
$\mathrm{U}=\mathbf{0}$
$\mathrm{V}=\mathrm{v}$
$\mathrm{A}=4.2$
$\mathrm{T}=$

$$
v^{2}=u^{2}+2 a s
$$

$$
v^{2}=0^{2}+2(4.2)(0.4)
$$

$$
v^{2}=3.36
$$

$$
v=1.833
$$

Now use $v=u+a t$

$$
\begin{gathered}
1.833=0+4.2 t \\
t=0.46
\end{gathered}
$$

*once the string went slack (i.e. once B hit the ground) we needed to find the new acceleration. This will not be due to gravity like for the vertical pulleys, since A is moving horizontally and gravity only acts vertically!
We re-resolve to find the new acceleration. We do what we did when we considered A horizontally last time, except we delete T since no tension in the strong

$$
\rightarrow: T=0.8 a
$$

Deleting T gives

$$
\begin{gathered}
0=0.8 a \\
a=0
\end{gathered}
$$

iii.
rope is light and inextensible and pulley is smooth

4 Diamond

4.1 Vertical
19)
$1.2 g>0.8 g$ so we know which way the system is moving (the heavier object moves down)

Consider A:
Take \downarrow as positive since A is moving downwards
This means every force going downwards is a positive and every force going upwards is a positive

$$
\downarrow:-T+1.2 g=1.2 a \text { (1) }
$$

Consider B:
Take \uparrow as positive since B is moving upwards This means every force not going upwards is a positive and every force going downwards is a negative
$\uparrow: T-0.8 g=0.8 a(2)$
i. and ii.

Solve (1) and (2) simultaneously by re-arranging both for T

$$
\begin{aligned}
& T=1.2 g-1.2 a \\
& T=0.8 a+0.8 g
\end{aligned}
$$

$1.2 g-1.2 a=0.8 a+0.8 g$
$2 a=0.4 g$
$a=1.96 \mathrm{~ms}^{-2}$
Sub back into $T=1.2 g-1.2 a=1.2 g-1.2(1.96)=9.408 \mathrm{~N}$

20)

Consider 10 kg weight:
Take \uparrow as positive since moving upwards
$\uparrow: T_{1}-10 g=10 a(1)$

Consider 12 kg weight:
Take \downarrow as positive since
moving downwards
$\downarrow:-T_{1}+T_{2}+12 g=12 a(2)$

Consider 2 kg weight:
Take \downarrow as positive since
moving downwards
$\downarrow:-T_{2}+2 g=2 a$ (3)

Consider 12 kg and 2 kg weight:
Take \downarrow as positive since moving downwards
$\downarrow:-T_{1}-T_{2}+T_{2}+2 g+12 g=14 a$
$-T_{1}+14 g=14 a(4)$
(we won't use this equation
since has 2 unknowns in it)

Solve (1) and (4) simultaneously
$T_{1}-10 g=10 a \Rightarrow T_{1}=10 a+10 g$
$-T_{1}+14 g=14 a \Rightarrow T_{1}=-14 a+14 g$
$10 a+10 g=-14 a+14 g$
$24 a=4 g$
$a=1.63 \mathrm{~ms}^{-2}$

Sub into $T_{1}=10 a+10 g$
$T_{1}=10(1.63)+10 \mathrm{~g}=114.3 \mathrm{~N}$
$-T_{2}+2 g=2 a$
$-T_{2}+2 g=2(1.63)$
$T_{2}=16.34 \mathrm{~N}$

i. and ii.

Consider P:

Consider Q:

Take \uparrow as positive since A is moving upwards
This means every force going upwards is a positive and every force going upwards is a negative

Take \downarrow as positive since B is moving downwards This means every force going upwards is a negative and every force going downwards is a positive

$\begin{aligned} \text { Using template } F & =m a \text { we get } \\$$$
:-T+5 m g
$$$& =5 m a\end{aligned}$

Using template $F=m a$ we get

$$
\uparrow: T-2 m g=2 m a
$$

iii.

$$
\begin{aligned}
& T-2 m g=2 m a \\
& -T+5 m g=5 m a
\end{aligned}
$$

Let's re-arrange both for T and set them equal

$$
\begin{gathered}
T=2 m a+2 m g \\
T=5 m g-5 m a \\
2 m a+2 m g=5 m g-5 m a
\end{gathered}
$$

Cancel the $m^{\prime} s$ from each term

$$
\begin{gathered}
2 a+2 g=5 g-5 a \\
7 a=3 g \\
a=\frac{3}{7} g=4.2
\end{gathered}
$$

First we consider \mathbf{Q} to find v, since the speed Q hits the ground is the starting speed for P

Now use SUVAT to get h

$$
\begin{aligned}
& \mathrm{S}=h \\
& \mathrm{U}=0 \\
& \mathrm{~V}=\mathrm{v}
\end{aligned}
$$

$A=4.2$ (looking at downwards motion only so accel is positive)

$$
\mathrm{T}=t
$$

$$
\begin{gathered}
v^{2}=u^{2}+2 a s \\
v^{2}=0^{2}+2(4.2) h \\
v^{2}=8.4 h \\
v=\sqrt{8.4 h}
\end{gathered}
$$

Once Q hits the ground, P moves up a bit more since the string is slack and allows P to move up a bit. P then reaches its greatest speed and comes to rest.

> Next we consider P

$$
\begin{gathered}
\mathrm{S}=s \\
\mathrm{U}=\sqrt{8.4 h} \\
\mathrm{~V}=0 \text { (comes to rest) } \\
a=-9.8 \text { (string slack so accel is due to gravity) } \\
\mathrm{T}=t \\
v^{2}=u^{2}+2 a s \\
0^{2}=(\sqrt{8.4 h})^{2}+2(-9.8) s \\
s=\frac{8.4 h}{2(9.8)}=\frac{3}{7} h
\end{gathered}
$$

Total height $=$ height originally off the ground + distance p moves (since Q moves the same distance) + extra distance Q moves

$$
\begin{aligned}
h & +2 h+\frac{3}{7} h \\
& =\frac{24}{7} h
\end{aligned}
$$

iv. The distance that Q falls to the ground is not exactly h
v. Inextensible \Rightarrow acceleration is the same on both sides of the pulley, but in reality the accelerations of P and Q would not have the same magnitude
© MyMathsCloud

4.2 Horizontal

This is different to most questions as we move AWAY from the pulley, not towards

Consider object P :
(we have to look at 2 directions since we have forces in the horizontal and vertical direction) Vertical: Horizontal
Take \uparrow as positive
There is no acceleration in
this direction since the motion is horizontal

$$
\begin{gathered}
\uparrow: R-3 g=3(0) \\
R=3 g(1)
\end{gathered}
$$

Take \leftarrow as positive since moving to the left now

$$
\begin{gathered}
\leftarrow:-T-8+40=3 a \\
T=-3 a+32(2)
\end{gathered}
$$

Consider object Q :
(we only look at the vertical direction since only have forces in this direction) Vertical:
Take \uparrow as positive since moving
upwards
$\downarrow: T-2 g=2 a$
$T=2 a+2 g(3)$
$\downarrow: T-2 g=2 a$
$T=2 a+2 g(3)$

$$
T=2 a+2 g(3)
$$

\qquad

i.

We had the following equations

$$
\begin{gathered}
R=3 g \\
T=-3 a+32 \\
T=2 a+2 g
\end{gathered}
$$

Let's set (2) and (3) equal

$$
-3 a+32=2 a+2 g
$$

$$
5 a=32-2 g
$$

$$
a=2.48 \mathrm{~ms}^{-2}
$$

ii.

$$
\begin{aligned}
& \text { sub } a \text { into } T=2 a+2 g \\
& T=2(2.48)+2 g=24.56 N
\end{aligned}
$$

iii.

Way 1:
Consider P
$\mathrm{S}=$
$\mathrm{U}=0$

Way 2: Longer

Consider P
$\mathrm{S}=$
$\mathrm{U}=0$
www.mymathscloud.com

$$
\begin{gathered}
\mathrm{V}=v \\
\mathrm{~A}=2.48 \\
\mathrm{~T}=0.5 \\
v=u+a t \\
v=0+2.48(0.5)=1.24 \\
s=u t+\frac{1}{2} a t^{2} \\
s=(0)(0.5)+\frac{1}{2}(2.48)(0.5)^{2}=0.31
\end{gathered}
$$

Now string breaks

Consider Q

Q has moved up by what P moved to the left and now needs to move down again. Don't forget that it was already $2 m$ off the ground before P even more so we need to add this on

Way 1: Take down to be positive sense

$$
\begin{gathered}
\mathrm{S}=2+0.31=2.31 \\
\mathrm{U}=-1.24 \\
\mathrm{~V}=v
\end{gathered}
$$

$A=9.8$ (due to gravity)

$$
\begin{gathered}
\mathrm{T}= \\
s=u t+\frac{1}{2} a t^{2}
\end{gathered}
$$

$2.31=(-1.24) t+\frac{1}{2}(9.8) t^{2}$

$$
t=0.825,-0.572
$$

t cant be negative
$t=0.825$

Way 2: Take up to be positive sense

$$
\begin{gathered}
\mathrm{S}=-(2+0.31)=-2.31 \\
\mathrm{U}=1.24 \\
\mathrm{~V}=v
\end{gathered}
$$

$\mathrm{A}=-9.8$ (due to gravity)

$$
\mathrm{T}=
$$

$$
s=u t+\frac{1}{2} a t^{2}
$$

$$
-2.31=1.24 t+\frac{1}{2}(-9.8) t^{2}
$$

$$
t=0.825,-0.572
$$

t cant be negative

$$
t=0.825
$$

Consider Q
Let's find how much more Q moves yup

$$
\begin{gathered}
\mathrm{S}=s \\
\mathrm{U}=1.24 \\
\mathrm{~V}=0
\end{gathered}
$$

$$
A=-9.8 \text { (due to gravity) }
$$

$$
\mathrm{T}=
$$

$$
v^{2}=u^{2}+2 a s
$$

$$
0^{2}=1.24^{2}+2(-9.8) s
$$

$$
s=0.0784
$$

Let's find how long it takes Q to come to rest (at the top and again when it has hit the ground)

Take downwards to be positive

$$
\begin{gathered}
\mathrm{S}=2+0.31+0.0784=2.3884 \\
\mathrm{U}=0 \\
\mathrm{~V}=
\end{gathered}
$$

$A=9.8$ (due to gravity)

$$
\mathrm{T}=
$$

$$
s=u t+\frac{1}{2} a t^{2}
$$

$$
2.3884=0+\frac{1}{2}(9.8) t^{2}
$$

$$
t= \pm 0.698
$$

$$
t \geq 0 \text {, so }
$$

$$
t=0.698
$$

But we also need to add on the time, t^{\prime}, it takes for Q to decelerate to 0 at its apex.

$$
\begin{gathered}
U=1.24 \\
V=0
\end{gathered}
$$

$A=-9.8$ (due to gravity)
$\mathrm{T}=$

$$
v=u+a t^{\prime}
$$

$$
0=1.24-9.8 t^{\prime}
$$

$$
t^{\prime} \approx 0.1265
$$

The total time is $0.1265+0.698 \approx 0.825$
iv.

$$
\begin{gathered}
\text { Consider Q } \\
\mathrm{S}=-(2+0.31)=-2.31 \\
\mathrm{U}=1.24 \\
\mathrm{~V}= \\
\mathrm{A}=-9.8 \text { (due to gravity) } \\
\mathrm{T}= \\
v^{2}=u^{2}+2 a s \\
v^{2}=1.24^{2}+2(-9.8)(-2.31)
\end{gathered}
$$

$$
v=6.84 \mathrm{~ms}^{-1}
$$

v.
$R-2 g=2(0)$
$R=19.6$
vi.

- Include a more accurate value for g
- Include a variable resistance in the model rather than a constant
- Include the dimension of the pulley in the model so that the string is not parallel to the table
- Include a frictional force at the pulley

23)

We have $m_{2}>\mu m_{1}$, meaning that the pull of B is larger than friction at A, so the system is in motion and B is going down.

$$
\text { Consider object } A \text { : }
$$

Consider object B :
(we only look at the vertical

> forces in the horizontal and vertical direction)
(we have to look at 2 directions since we have
direction since only have forces in
this direction)
Take \downarrow as positive

There is no acceleration in this direction since the motion is horizontal $\begin{gathered} \uparrow: R-m_{1} g=m_{1}(0) \\ R=m_{1} g \end{gathered}$	$\rightarrow: T-F=m_{1} a$ We take $F=\mu R=$ $\begin{aligned} & \mu m_{1} g \\ & T=m_{1} a+\mu m_{1} g \end{aligned}$	$\begin{aligned} & \downarrow: m_{2} g-T=m_{2} a \\ & T=m_{2} g-m_{2} a \end{aligned}$
We had the following equations$\begin{aligned} & R=m_{1} g \\ & T=m_{1} a+\mu m_{1} g \\ & T=m_{2} g-m_{2} a \end{aligned}$		
Let's set (2) and (3) equal		
$m_{1} a+\mu m_{1} g=m_{2} g-m_{2} a$		
$m_{1} a+m_{2} a=m_{2} g-\mu m_{1} g$		
$a\left(m_{1}+m_{2}\right)=m_{2} g-\mu m_{1} g$		
$a=\frac{g\left(m_{2}-\mu m_{1}\right)}{m s^{-2}}$		
	$m_{1}+m_{2}$	

4.2.1 Vertical - Diagonal Forces

24)

First of all, we need to find the tensions first

Consider A	Consider B	Consider C
$T_{1}-5.5=5.5(0)$	$T_{2}-7.3=7.3(0)$	$T_{3}-w=w(0)$
$T_{1}=5.5$	$T_{2}=7.3$	$T_{3}=w$

Let's concentrate on the red forces below

Way 1: Resolving (best method
$\mathrm{R}(\rightarrow): w \cos \beta-5.5 \cos \alpha=0$ $w \cos \beta=5.5 \cos \alpha$ (1)
$\mathrm{R}(\uparrow): w \sin \beta+5.5 \sin \alpha-7.3=0$ $w \sin \beta=7.3-5.5 \sin \alpha$ (2)

2 equations, 3 unknowns
We also know that all the angles add to 360°

$$
\begin{gathered}
90+\alpha+90+\beta+90=360 \\
\alpha+\beta=90 \\
\alpha=90-\beta \\
\hline
\end{gathered}
$$

Way 2: Lami's Method

$$
\frac{5.5}{\sin (90+\beta)}=\frac{7.3}{\sin 90}=\frac{w}{\sin (90+\alpha)}
$$

Let's use $\frac{7.3}{\sin 90}$ in both equations since no unknown in here

$\frac{5.5}{\sin (90+\beta)}=\frac{7.3}{\sin 90}$	$\frac{w}{\sin (90+\alpha)}=\frac{7.3}{\sin 90}$
$5.5 \sin 90=7.3 \sin (90+\beta)$	$w \sin 90=7.3 \sin (90+\alpha)$
$5.5(1)=\sin 90 \cos \beta+$	$w(1)=7.5(\sin 90 \cos \beta+\cos 90 \sin \beta)$
$\cos 90 \sin \beta$	$w=7.3 \cos \alpha(1)$

Way 3: Vector Triangle

All angles add to 360°
$90+\alpha+90+\beta+90=360$ $\alpha+\beta=90$
(so we have a right angled triangle)
we can build a vector triangle
$\begin{aligned} \text { (1) becomes } w \cos \beta & =5.5 \cos (90-\beta) \\ w \cos \beta & =5.5 \sin \beta(3)\end{aligned}$
(2) becomes
$\mathrm{w} \sin \beta=7.3-5.5 \sin (90-\beta)$

$$
w \sin \beta=7.3-5.5 \cos \beta
$$

Solve simultaneously (3) and (4)
(4) \div (3):
$\frac{w \sin \beta}{w \cos \beta}=\frac{7.3-5.5 \cos \beta}{5.5 \sin \beta}$
$\frac{\sin \beta}{\cos \beta}=\frac{7.3-5.5 \cos \beta}{5.5 \sin \beta}$
$5.5 \sin \beta \frac{\sin \beta}{\cos \beta}=7.3-5.5 \cos \beta$
$5.5 \sin ^{2} \beta=\cos \beta(7.3-5.5 \cos \beta)$
$5.5 \sin ^{2} \beta=7.3 \cos \beta-5.5 \cos ^{2} \beta$
$5.5\left(\sin ^{2} \beta-\cos ^{2} \beta\right)=7.3 \cos \beta$
$5.5(1)=7.3 \cos \beta$
$\cos \beta=\frac{5.5}{7.3}$
$\beta=\cos ^{-1}\left(\frac{5.5}{7.3}\right)=41.1^{\circ}$
$(3)^{2}+(4)^{2}:$
$(w \cos \beta)^{2}+(w \sin \beta)^{2}$

$$
=(5.5 \sin \beta)^{2}+(7.3-5.5 \cos \beta)^{2}
$$

We simplify both sides
$w^{2} \cos ^{2} \beta+w^{2} \sin ^{2} \beta=$
$30.25 \sin ^{2} \beta+53.29-$
$80.3 \cos \beta+30.25 \cos ^{2} \beta$
$w^{2}=30.25(1)+53.29-$
$80.3 \cos \beta$
$w^{2}=83.59-80.3 \cos \beta$
$w^{2}=83.59-80.3 \cos 41.1$
$w^{2}=23.3$
$w=4.8$
angle $A P_{1} X=\beta=41.1^{\circ}$

Note: we know the sum of the angle is 360°
$90+\alpha+90+\beta+90=360$
$\alpha+\beta=90$
$\alpha+41.4=90$ $\alpha=48.6$
(1) becomes $w=7.3 \cos (48.6)=4.8$

Note: resultant is since in equilibrium

We can use SOHCAHTOA

$$
\begin{gathered}
\cos x=\frac{5.5}{7.3} \\
x=41.1
\end{gathered}
$$

$\sin 41.1=\frac{w}{7.3}$
$w=4.82$

$\beta=33.6$		
$\beta \approx 34^{\circ}$		

Consider pink	Consider blue
$\uparrow: T_{1}-0.3 \mathrm{~g}=0.3(0)$	$\uparrow: T_{2}-0.5 \mathrm{~g}=0.5(0)$
$T_{1}=0.3 \mathrm{~g}$	$T_{2}=0.5 \mathrm{~g}$

Way 1: Resolving (best method)

$\mathrm{R}(\rightarrow): 0.3 g \sin \beta-0.5 g \sin \alpha=0$ (1)
$R(\uparrow): 0.3 g \cos \beta+0.5 g \cos \alpha-m g=0(2)$
2 equations, 2 unknowns
(1) becomes $0.3 g \sin \beta=0.5 g \sin \alpha$ (3)
(2) becomes $0.3 g \cos \beta=-0.5 \mathrm{~g} \cos \alpha+\mathrm{mg}$ (4)
(3) $^{2}+(4)^{2}:$
$(0.3 g \sin \beta)^{2}+(0.3 g \cos \beta)^{2}$
$=(0.5 g \sin \alpha)^{2}+(-0.5 \mathrm{~g} \cos \alpha+\mathrm{mg})^{2}$
$0.09 g^{2} \sin ^{2} \beta+$
$0.09 g^{2} \cos ^{2} \beta=0.25 g^{2} \sin ^{2} \alpha+$
$0.25 g^{2} \cos ^{2} \alpha-m g^{2} \cos \alpha+m^{2} g^{2}$
$0.09 g^{2}\left(\cos ^{2} \beta+\sin ^{2} \beta\right)=$
$0.25 g^{2}\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)-m g^{2} \cos \alpha+$ $m^{2} g^{2}$
$0.09 g^{2}(1)=0.25 g^{2}(1)-m g^{2} \cos \alpha+$ $m^{2} g^{2}$
$0.09=0.25-m \cos \alpha+m^{2}$
We are told $m=0.7$

$$
0.09=0.25-0.7 \cos \alpha+0.7^{2}
$$

$$
\cos \alpha=\frac{13}{14}
$$

$$
\alpha=21.8^{\circ}
$$

We can plug into (2) now:

All angles add to 360°

$$
\begin{gathered}
x+\beta+180-\alpha-\beta=180 \\
180-\alpha+x=180 \\
\alpha=x
\end{gathered}
$$

Now we can build the vector triangle

By the cosine rule,

$$
\begin{gathered}
(0.5 g)^{2}=(m g)^{2}+(0.3 g)^{2}-2 m g 0.3 g \cos \beta \\
0.6 m g^{2} \cos \beta=\left(m^{2}-0.16\right) g^{2}
\end{gathered}
$$

$$
\cos \beta=\frac{m^{2}-0.16}{0.6 m}=\frac{11}{14}
$$

$$
\beta \approx 38.2^{\circ}
$$

Repeating the same thing for $\alpha=x$,
$(0.3 g)^{2}=(m g)^{2}+(0.5 g)^{2}-2 m g 0.5 g \cos \alpha$

$$
\begin{gathered}
m g^{2} \cos \alpha=\left(m^{2}+0.16\right) g^{2} \\
\cos \alpha=\frac{m^{2}+0.16}{m}=\frac{13}{14} \\
\alpha \approx 21.8^{\circ}
\end{gathered}
$$

$$
\begin{gathered}
0.3 g \cos \beta+0.5 \mathrm{~g} \cos \alpha-\mathrm{mg}=0 \\
0.3 g \cos \beta+0.5 \mathrm{~g}\left(\frac{13}{14}\right)-0.7 \mathrm{~g}=0 \\
\cos \beta=\frac{11}{14} \\
\beta \approx 38.2^{\circ}
\end{gathered}
$$

ii.

If using way 1 :
We had previously that

$$
\begin{gathered}
0.09=0.25-m \cos \alpha+m^{2} \\
m^{2}-\cos \alpha m+0.16=0 \\
b^{2}-4 a c \geq 0 \text { since } m \text { is real } \\
(-\cos \alpha)^{2}-4(1)(0.16) \geq 0 \\
\cos ^{2} \alpha \geq 0.64 \\
-0.8 \leq \cos \alpha \leq 0.8 \\
\cos \alpha<0.8
\end{gathered}
$$

If using way 3 :
the length of any one side of the triangle of forces cannot exceed the sum of the length of the other two sides.
The case $m=0.8$ is excluded because the pulleys are not in the same vertical line
iii.

The easiest method is to use our vector triangle formula from above.

$$
\cos \beta=\frac{m^{2}-0.16}{0.6 m}=\frac{11}{14}
$$

If we substitute $m=0.4, \cos \beta=0, \beta=90$, so the string at the right is horizontal.
iv. K cannot be above the level of the pulleys

